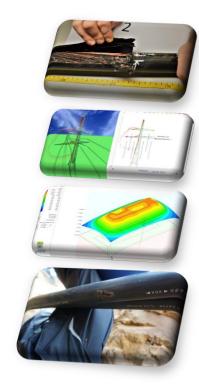
Optimierte Betriebsmittelausnutzung für Energiekabel

Forschungsgemeinschaft für Elektrische Anlagen und Stromwirtschaft e.V.

Dr. Gregor Brammer

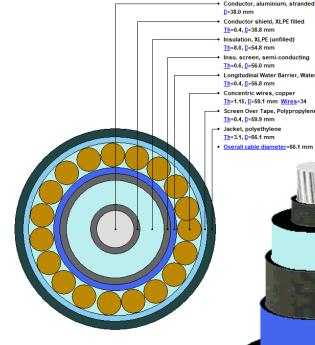
Gelsenkirchen, 21.06.23

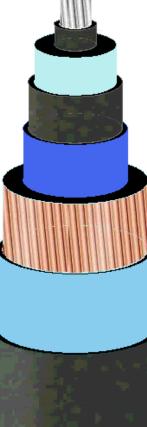


Forschungsbereich Energietechnische Anlagen

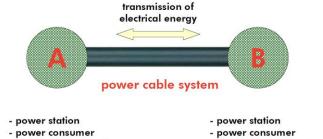
Das Betriebsmittel im Fokus

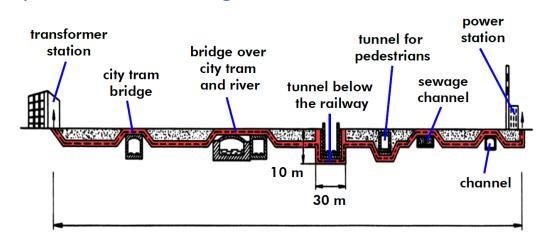
- Schadensanalyse / Ursachenklärung
 - Schichtweises Zerlegen
 - Netzanalysen zur Ursachenermittlung
- Elektromagnetische Beeinflussung
 - Beeinflussungsfragen im Bereich von Freileitungen (BImSchV, DGUV)
 - Konzeptionierung / Optimierung von Erdungsanlagen
- Kabelprüfung vor Ort
 - 6/10kV 18/30kV Inbetriebnahme
 - Messung von Teilentladungen und Tangens-Delta
- Qualitätssicherung in der Produktion
 - Entwicklung neuer (Inline-) Verfahren
 - Prototypenbau
- Thermische Kabelauslegung
 - Transiente Berechnungen nach IEC 60287/60853
 - Beliebige Verlegeformation
 - Bis zu 20% höhere Belastbarkeit bei Berücksichtigung von Lastgängen




Aufbau von Energiekabeln

- Von Innen nach Außen
 - Leiter (verschiedene Formen)
 - Isoliersystem (ISL, ISO, OSL)
 - Bettungsmaterial
 - Drahtschirm + Querleitwendel
 - Bettungs-/Quellmaterialien
 - Metallmantel
 - PE-Mantel
 - Armierungen
- Abmessungen bei Mittelspannung standardisiert (VDE 0276-620)
- Ursache für Wärmeerzeugung:
 - Leiterverluste
 - Dielektrische Verluste
 - Schirmverluste
- Maßgeblich für Grenztemperatur: Isoliermaterial (VPE, PVC, EPR)
 - → 70...90°C für neuwertige Kabel


Th=3.1, D=66.1 mm Overall cable diameter=66.1 mm

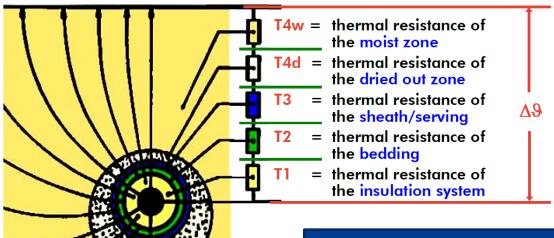


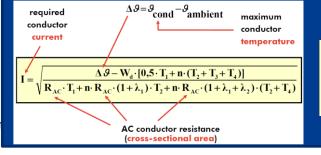
Übertragung von Energie

- Kabel übertragen Energie von einem Ort zum anderen
- Zu übertragende Leistung abhängig von Projektspezifikation

- Trassenführung ist wichtiger Aspekt in der Planung
 - Systemlänge
 - Trassenbreite
 - Verlegeformation
 - Verlegetiefen
 - Externe Wärmequellen
 - Muffenplanung

distribution network

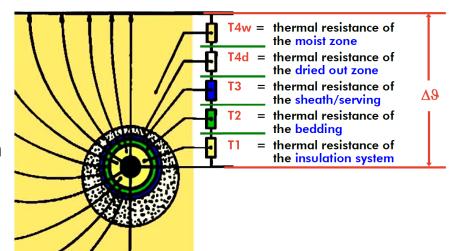

- Planungen für späteres Assetmanagement
 - Maximale prüfbare Länge von Kabeln
 - Zugängige Prüfanschlüsse


distribution network

Thermo-Haushalt des Kabels

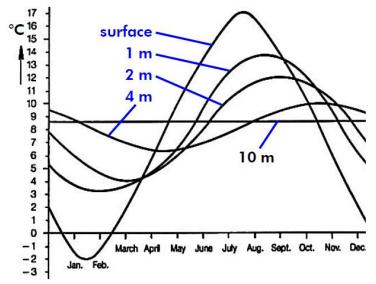
- Kabelaufbau
- Erdschichten
- Unterschiedliche Schichten besitzen unterschiedliche thermische Kennwerte
- Äußere Umgebungsbedingungen

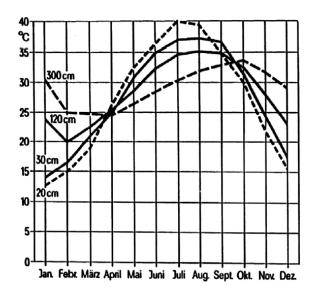
Berechnung möglich durch Analogie zur Elektrotechnik

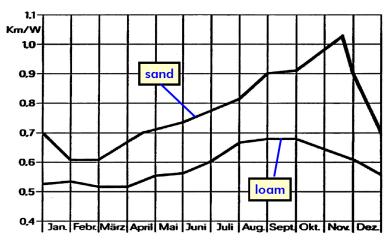


electrical: $U = R \cdot I$

analog: $\Delta \mathcal{G} = T \cdot W$


Thermo-Haushalt des Kabels


- Hört sich einfach an, ABER:
 - Umgebungstemperatur ist nicht konstant
 - Thermischer Widerstand hängt ab von
 - Verlegetiefe
 - Rückfüllmaterial
 - Klimatischen Bedingungen
 - Zyklische Kabelauslastung
 - Teilweise Austrocknung von Böden
 - Kabelgruppierungen/Parallelverlegung
 - ..



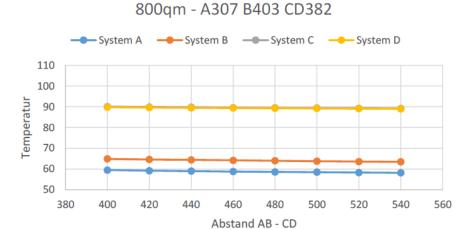
Beispiele für Abhängigkeiten der Parameter

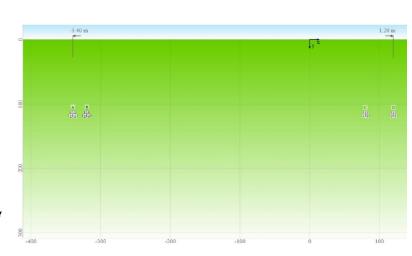
- Erdbodentemperatur
 - Tiefenabhängigkeit
 - Zeitabhängigkeit
 - Standortabhängigkeit
- Wärmewiderstand des Erdbodens
 - Materialabhängigkeit
 - Zeitabhängigkeit

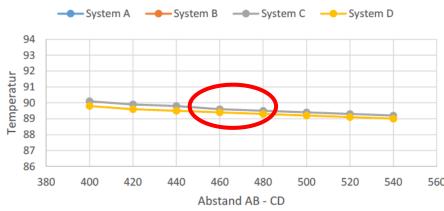
Auslegung nach VDE Tabellen 0276-620/298

- In Mittelspannung ist grundlegendes Kabeldesign standardisiert
- Strombelastbarkeiten normativ vorgegeben
 - Mindestanforderungen
 - ABER: nur bis 500mm² Leiterquerschnitt
 - Belastbarkeiten für größere Leiterquerschnitte sind nur durch Herstellertabellen angegeben, und nur für bestimmte Umgebungsbedingung
- Korrekturfaktoren für Abweichungen von der Normverlegung VDE 0276-298
 - "Norm-Strombelastbarkeit" bei "Norm-Verlegung"
 - Multiplikative Erweiterung mit Korrekturfaktoren für jede einzelne Abweichung
- Insbesondere bei vielen Korrekturfaktoren nimmt Zuverlässigkeit des Ergebnisses ab!
- Freie Modifikation der Verlegebedingungen nicht möglich
- → Berechnung nach IEC 60287

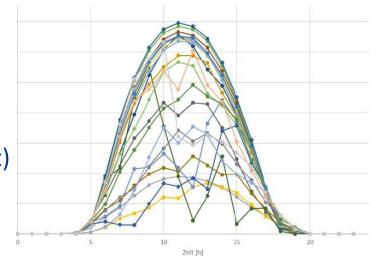
Beispiele der Berechnungen nach IEC 60287/60853

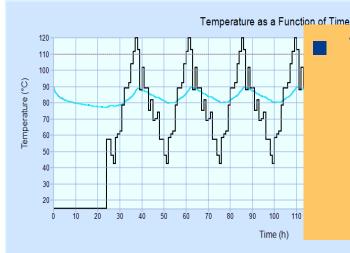

- Häufung und Stapelung im Stadtbereich
- Herausforderung:
 - Geringe Trassenbreite / Trassenhöhe
 - Meist vollständige Trassenüberdeckung
 - Schutzrohrverlegung
 - Unterschiedliche Kabeltypen
 - Externe Wärmequellen (Fernwärme, Wasserleitungen, ...)
 - Darstellung der (n-1)-Sicherheit
- → VDE-Tabellen sind nicht anwendbar
- Freie Parametervariation mit iterativer Berechnung
 - Variation Verlegetiefe
 - Abbildung der Systemausfälle
 - Verschiedene Verlegeformationen/Abstände




Beispiele der Berechnungen nach IEC 60287/60853: Windparks

- Parallelverlegung bei Bestandstrassen
 - Neubewertung nötig
 - Berücksichtigung der Urplanung
 - Bestand: Systeme C/D, Grenzauslastung
 - Neuplanung Systeme A/B
 - Abstandsvariation, bis Einfluss "minimiert"
- → Die resultierenden Abstände können die Trassenplanung empfindlich beeinflussen


800qm - A307 B403 CD382



Beispiele der Berechnungen nach IEC 60287/60853: PV-Parks

- PV-Parks weisen typische Lastprofile auf
- Abkühlprozesse im Kabel und Erdboden
- Aufheizphasen bei Nennstrom teils >10h
- Lastprofile frei definierbar (Messdatenbasiert)
- → Transiente Kabeltemperaturen
- → Höhere zulässige Stromtragfähigkeit bis Grenztemperatur erreicht wird (bis zu +20%)

Thermisches Wechselspiel

- Leerlauf ← → Volllast
- Erhöhte mechanische Belastung von Garnituren
- → Umfängliche Inbetriebnahmeprüfung (Fingerprint)
- → regelmäßige Prüfung auf Teilentladungen

Optimierte Betriebsmittelausnutzung für Energiekabel

Zusammenfassung

- Kabeldesign in Mittelspannung größtenteils standardisiert
- Trend zu größeren Querschnitten (nicht gänzlich durch Norm abgedeckt)
- Bodenparameter mit erheblichem Einfluss auf die Strombelastbarkeit
- Verlegeformationen und Bedingungen meist schwer durch standardisierte Formen abdeckbar
- Korrekturfaktoren aus VDE-Tabellen in größerer Anzahl ungenau oder gänzlich unzulässig
- Klare Vorteile in der iterativen Berechnung nach IEC
 - Abbildung der Erdbodeneigenschaften
 - Genauere Ergebnisse
 - Freie Verlegeformation
 - Parametervariationen zur Optimierung
 - Ausnutzung von Lastprofilen zur Steigerung der zulässigen Strombelastbarkeit

